ENABLERS OF MATHEMATICAL MODELLING: WHAT I'VE LEARNT THROUGH THREE YEARS OF ENGAGEMENT

1

Four students have participated in the Enablers project from 2017-2019

In 2017, they were:

- Student A (Year 10)
- Student B (Year 9)
- Student C (Year 8)
- Student D (Year 8)


3



5

INSTITUTE FOR LEARNING SCIENCES LEARNING SCIENCES

## The Enablers of Mathematical Modelling




## The principles that relate to TEACHERS are:

tast is understiod.
madeling process te rasel a sulatien, father shan beat a problem as an inilvidual exarcled
the mudelbe proces

## The principles that relate to STUDENTS are:

Students who model successfully*:

ENGAGE
WORKCOLLABOIUATIVELY
USETECHNOLOCY
"It thould be noted that it is posible for nuccestul modeling to be sndertaken alone. and without the use of technologer

7

Teachers who implement modelling successfully in their mathematics classes:

```
DEVELOP/SELECTTASKS
ENCOUHAKE STUDENTS
RESPONO
ANTICIPATE
```

[^0]

9

## Enablers website: Classroom Resources

OUR ACTIVITIES:

The activities below have been trialled in clasarooms in Queenslard and/or Victoria and have proven to be eflective acress lower, middle and upper iecundery matlematica ciasen. Some have heen written by wis sorive hy our project teachers in consultation with the Entahirn team, Others have been adapted frum previounly published sctivaties.

Where podaihle. we have providod both a workaheet and Solution Gotile/Teacher Notes Jor each activity. The tracher nuirs do nat always peuvide complete mathematital workings. They mgent poasifilities fur implementation acd for sobving jroblems.


Bushowalking
Worksheet


11



13


## Enablers website: Classroom Resources

| Neme of Petrol Station | Petrol Cost (Cents/turev) |  | $1220$ |
| :---: | :---: | :---: | :---: |
|  |  | unimodeit |  |
| THeven Nhamp Cowe | 1201.7 |  |  |
|  | 1357 | Anesel | 125.9 |
| Es Staftord | 1385 |  |  |
| Purs Levtas Part | 12 a ? | ailnget | 81, |

Sam'scar has be Notowiec amilitules


## Which petrol station is the

 best choice for Sam?
## Enablers website: Classroom Resources




17


## Enablers website: Classroom Resources

3 Eraluation

 Inding apgroinstely where on the Itring of Rtchel aumbers s sevely ideatited compoitina would be stack.






Figure 1

21 | Steve Broderick | Breakout 1 | Enablers Symposium, May 2021



23


The minimal pottis for all nine runners are shown below in figure 8. All poths are equal in length which ressit in a minimum distance of $200 \sqrt{2}$ metres.


For a general solution, consider figure 9 below, where the minimal distance is represented by $d_{2}+d_{2}+d_{2}+d_{4}$.


Figure 9

$$
\begin{aligned}
& \begin{aligned}
d_{1} & =\sqrt{x^{2}+x^{2}} \\
& =\sqrt{2 x^{2}} \\
& =\sqrt{2} x \text { (also the same distance for } d_{3} \text { ) }
\end{aligned} \\
& \begin{aligned}
d_{1} & =\sqrt{(100-x)^{2}+(100-x)^{2}} \\
& =\sqrt{2(100-x)^{2}} \\
& \left.=\sqrt{2}(100-x) \text { (also the same distance for } d_{4}\right)
\end{aligned} \\
& d_{1}+d_{2}+d_{3}+d_{4}=\sqrt{2} x+\sqrt{2}(100-x)+\sqrt{2} x+\sqrt{2}(100-x) \\
& =2 \sqrt{2} x+2 \sqrt{2}(100-x) \\
& =2 \sqrt{2}(x+(100-x)) \\
& =200 \sqrt{2} \text { metres } \\
& \text { Which Is equal to } 100 \sqrt{8} \text { metres. } \\
& \text { The general solution for a square of side }{ }^{n} x^{x} \text { is } \sqrt{8} x
\end{aligned}
$$

## Enablers' Project Findings

- Where possible, use real world problems/real world data v purely mathematical contrived problems
- Some students are after the 'correct answer'; modelling allows for a range of answers within the ballpark
- Using Fermi problems in the junior school allows students to become better modellers
- When using technology for curve fitting, students may aim for the best correlation coefficient which is not necessarily the best model
- Expect the unexpected


## Other Resources


https://islands.smp.uq.edu.au/
Michael Bulmer (m.bulmer@uq.edu.au)

29


Times for the Lunar Eclipse
This is the first full total lunar eclipse since 2018. From Queensland, the eclipse will be seen in its entirety. Times below are in EST.

| Penumbral eclipse begins | 6.46 pm |
| :--- | :--- |
| Partial eclipse begins | $7: 45 \mathrm{pm}$ |
| Total eclipse begins | $9: 10 \mathrm{pm}$ |
| Greatest eclipse | $9: 19 \mathrm{pm}$ |
| Total ecipse ends | $9: 28 \mathrm{pm}$ |
| Partial eclipse ends | $10: 53 \mathrm{pm}$ |
| Penumbral eclipse ends | $11: 51 \mathrm{pm}$ |



- The eccentricity of a circle is zero.
- The eccentricity of an ellipse which is not a circle is greater than zero but less than 1 .
- The eccentricity of a parabola is 1.
- The eccentricity of a hyperbola is greater than 1.



33

## A maths modelling activity

Tycho \& Kepler: A STEM partnership
Tycho Brahe (1546-1601) was the most accurate pre -telescope astronomer of his era. His data on Mars's orbit allowed Kepler to determine the elliptical nature of the orbit. He used extra-large sextants and quadrants anchored to the bedrock under his observatory to avoid wind and vibrations.


Johannes Kepler(1571-1630) was the greatest mathematical astronomer of his day. He was totally convinced that the Sun lies at the centre of the Universe.

[^1]

35



# Calculating the eccentricity of the Earth's orbit around the sun by measuring the diameter 

$$
e=\frac{S_{p}-S_{a}}{S_{p}+S_{a}}
$$


$S_{a}=138 \mathrm{~mm}$

39

INSTITUTE FOR LEARNING SCIENCES E TEACHER EDUKATION

$S_{p}=143 \mathrm{~mm}$

$$
\begin{aligned}
& e=\frac{S_{p}-S_{a}}{S_{p}+S_{a}} \\
& e=\frac{143-138}{143+138} \\
& e=0.0178
\end{aligned}
$$

Distance of the Sun at perihelion $=152.1$ million km Distance of Sun at aphelion $=147.1$ million km

$$
\begin{aligned}
& e=\frac{d_{a}-d_{p}}{d_{a}+d_{p}} \\
& =\frac{152.1-147.1}{152.1+147.1} \\
& =0.0167 \text { (accepted value) }
\end{aligned}
$$




43


Figure 9. Enlargements of the starting point and end point for the ruler tool show the undulations in the chromosphere. The variations in length from the ruler tool due to the undulations are approximately $\pm 1.78$ piocels.

[^2]

45

| Date | Day | Solar Diameter (pixels) |
| :---: | :---: | :---: |
| 11 ${ }^{\text {th }}$ January 2017 | 11 | 1627 |
| 17 ${ }^{\text {th }}$ January 2017 | 17 | 1626 |
| $26^{\text {m }}$ January 2017 | 26 | 1624 |
| 114 March 2017 | 70 | 1614 |
| $18^{\text {th }}$ March 2017 | 77 | 1612 |
| 26** March 217 | 85 | 1609 |
| 314 March 2017 | 90 | 1605 |
| $2^{\text {2d }}$ April 2017 | 92 | 1604 |
| $7^{\text {th }}$ April 2017 | 97 | 1602 |
| $14^{\text {th }}$ April 2017 | 104 | 1599 |
| $11^{\text {th }}$ January $2018{ }^{*}$ | $376 *$ | 1627****** |
| $26^{\text {th }}$ January 2018* | 391* | 1624* |

Table 2. Solar diameter data and corresponding day number. * indicates diameters are assumed to be the same as the previous year. The error associated with the solar diameters was $\pm 1.78$ pixels.


Figure 7. Represents the sinusoidal graph of day v solar diameter. The minimum and maximum represent when aphelion and perihelion occur,

A maths modelling activity

$$
\begin{aligned}
e & =\frac{1626.29-1573.99}{1626.29+1573.99} \\
& =0.016348
\end{aligned}
$$

$$
\begin{gathered}
Y=26.157 \sin (0.0176 x+1.348)+1600.143 \\
a
\end{gathered}
$$

$$
e=\frac{(d+a)-(d-a)}{d+a+d-a}
$$

$$
e=\frac{2 a}{2 d}
$$

$$
e=\frac{a}{d}
$$

$$
=\frac{26.157}{1600.143}
$$

$$
=0.0163
$$

## A maths modelling activity

INSTITUTE FOR LEARNING SCIENCES E TEACHER EDUCATION

Another test of the model is determining the date for perihelion and aphelion. The model predicted the $13^{\text {th }}$ day for perihelion (January $13^{*}$ 2017) and the $191^{\text {* }}$ day for aphelion ( $10^{\text {th }}$ July 2017)
Based on the dates in table 3 , the $13^{\circ}$ January is 8 days past the $5^{\circ}$ January 2017 and the $10^{10}$ July is 6 days past the $4^{\text {th }}$ July 2017
The percentage error is $\frac{0}{365.253} \times 100=2.2 \%$ and $\frac{6}{365.253} \times 100=1.64 \%$ respectively.

| Perihelion | Distance (km) | Aphelion | Distance (km) |
| :---: | :---: | :---: | :---: |
| 5. January 2017 | 147100998 | $4^{\text {mi }}$ July 2017 | 152092504 |
| $3^{\text {ad }}$ January 2018 | 147097233 | $7{ }^{\text {m J July } 2018}$ | 152095566 |
| $3^{\text {e4 }}$ January 2019 | 147099760 | $5^{50}$ July 2019 | 152104285 |
| $5^{\text {min }}$ January 2020 | 147091144 | $4^{\text {mi }}$ July 2020 | 152095295 |
| $2^{\text {ci }}$ January 2021 | 147093163 | $6^{\text {m }}$ July 2021 | 152100527 |

Table 3. US Naval Observatory perihelion and aphelion dates and distances for 2017 to 2021.
Substituting the 2017 perihelion and aphelion distances from table 3 into the eccentricity formula:

$$
e=\frac{d_{x}-d_{p}}{d_{e}+d_{p}}=\frac{352092504-147100990}{152092504+147100998}=0.0166832 \text { (very close to the project value of } e=0.016345 \text { ) }
$$



50 | Steve Broderick | Breakout 1| Enablers Symposium, May 2021

## Solar diameter data

| Date | Day number | Sun's diameter |
| :--- | :--- | :--- |
| 4th July 2019 | 0 | 51.58 |
| 14th Sept 2019 | 72 | 52.14 |
| 29th Sept 2019 | 86 | 52.35 |
| 13th Oct 2019 | 100 | 52.56 |
| 26th Oct 2019 | 113 | 52.71 |
| 9th Nov 2019 | 127 | 52.92 |
| 23rd Nov 2019 | 141 | 53.09 |
| 7th Dec 2019 | 155 | 53.27 |
| 5th Jan 2020 | 184 | 53.34 |
| 4th July 2020 | 365 | 51.58 |

## Model

$$
Y=0.88 \times \sin \left(\frac{2 \pi x}{365}-1.5708\right)+52.46
$$



```
A maths modelling activity
```

$$
\begin{aligned}
e & =\frac{53.34-51.58}{53.34+51.58} \\
& =0.01677
\end{aligned}
$$

$$
Y=0.88 \sin (0.0172 x-1.5708)+52.46
$$

$$
e=\frac{a}{d}
$$

$$
=\frac{0.88}{52.46}
$$

$$
=0.01677
$$

(accepted value =0.016683, 0.52\% error)

Year 11 Student D obtained an eccentricity $e=0.01657$ which is $0.67 \%$ error.

53


You will be required to collect several images of the Sun for a particular year that has been allocated to you. (eg 2016, 2017, 2018, 2019). Data may be obtained from the link below.
htro:/sumtoday Imsal comisumboday'

- Collect an appropriate sample of solar images to develop a model for how the diameter of the Sun varies over one full year,
- Use you model to predict the dates of perihelion and aphelion for your stated year.
- Use your data to determine the eccentricity of the Earth's arbit.


55


A maths modelling activity


An ellipse consisting of 100 metres of string is looped around two pegs representing the two foci which were 30 metres apart. The length of the major axis $(2 a)$ is 70 metres.

$$
\begin{aligned}
e & =\frac{50-20}{50+20} \\
& =0.43
\end{aligned}
$$




59

## A maths modelling activity




61

A maths modelling activity
NSTITUTE FOR LEARNING SCIENCES E TEACHER EDUCATION

| Pixel height | Distance (metres) | Number of steps |
| :--- | :--- | :--- |
| 284.41 | 20 | 0 |
| 257.7 | 22.07 | 30 |
| 187 | 30.42 | 60 |
| 145.39 | 39.12 | 90 |
| 123.29 | 46.14 | 120 |
| 117.78 | 48.26 | 150 |
| 136.57 | 41.65 | 180 |
| 160.73 | 35.39 | 210 |
| 203.06 | 28.01 | 240 |
| 263.72 | 21.56 | 270 |




$65$


[^0]:    
     Sypliter
    This rading cen be foond in the Links to Our Putilications pagie.

[^1]:    34 | Steve Broderick | Breakout 1 | Enablers Symposium, May 2021

[^2]:    44 | Steve Broderick | Breakout 1 | Enablers Symposium, May 2021

